等价无穷小替换公式是微积分中的重要工具,用于将一个函数中的无穷小量替换为与之等价的无穷小量。以下是常见的等价无穷小替换公式:
- 当 x → 0 时,常见的等价无穷小替换:
- sin(x) ≈ x:当 x 很小的时候,sin(x) 可以近似为 x。
- tan(x) ≈ x:当 x 很小的时候,tan(x) 可以近似为 x。
- arcsin(x) ≈ x:当 x 很小的时候,arcsin(x) 可以近似为 x。
- arctan(x) ≈ x:当 x 很小的时候,arctan(x) 可以近似为 x。
- ln(1 + x) ≈ x:当 x 很小的时候,ln(1 + x) 可以近似为 x。
- 当 x → ∞ 时,常见的等价无穷小替换:
- e^x ≈ ∞:当 x 很大的时候,e^x 可以近似为无穷大。
- ln(x + 1) ≈ ln(x):当 x 很大的时候,ln(x + 1) 可以近似为 ln(x)。
这些等价无穷小替换公式可以帮助简化复杂函数的计算和推导。但需要注意的是,等价无穷小替换是一种近似方法,在具体应用时要根据实际情况进行判断和验证。
财旺号所有作品(图文、网盘、音视频)收集于网络,均由用户自行上传分享,仅供网友学习交流,不声明或保证其内容的正确性,如发现本站有涉嫌抄袭侵权/违法违规的内容。请发送邮件至 1790309299@qq.com 举报,一经查实,本站将立刻删除。